Настроены0 параметров

Настроить фильтр

Регион
Все новости
+

Эксперты отмечают активизацию запуска новостроек

В августе 2024 года застройщики жилья резко нарастили выход на рынок новых проектов, сообщил РБК со ссылкой на аналитический отчет ДОМ.РФ.

   

Фото: ©  Евгений Харитонов / Фотобанк Лори

   

Как ранее информировал портал ЕРЗ.РФ, аналитики подсчитали, что в России в последний месяц лета начали строить 4,5 млн кв. м жилой недвижимости (+34% к показателю июля — 3,3 млн кв. м). Большее значение было зафиксировано только марте (4,8 млн кв. м), а в апреле — аналогично августу.

Объемы одновременно строящегося в России жилья прибавили 1,4% к июлю и в конце августа составили 117 млн кв. м (в конце июля зафиксированы +0,8% к июню и объем стройки — 115,4 млн кв. м). Объем строительства жилья по всей стране растет седьмой месяц подряд, говорится в отчете.

В Москве обновился максимальный показатель одномоментно строящегося жилья: 18,5 млн кв. м на начало сентября (+11% к тому же периоду 2023 года).

 

Динамика выхода новых жилых проектов, август 2024 года

Федеральный округ

Запуск новых проектов
в августе, тыс. кв. м

Динамика выхода новых проектов
по сравнению с июлем, %

Дальневосточный ФО

594

+216

Центральный ФО

1417

+124

Северо-Западный ФО

286

+39

Приволжский ФО

790

+19

Южный ФО

500

+2

Северо-Кавказский ФО

210

-19

Уральский ФО

342

-22

Сибирский ФО

288

-36

Источник: ДОМ.РФ на основе данных ЕИСЖС

  

Аналитики отметили наибольший рост в Дальневосточном федеральном округе. За август объем стартовавших в ДФО жилых новостроек вырос на 261%, до 594 тыс. кв. м. Ускорению строительства на дальнем востоке способствует продолжение действия программы льготной ипотеки под 2%.

Весьма высокие показатели по выходу новых проектов продемонстрировала Республика Бурятия, где в августе было запущено 229 тыс. кв. м нового строительства — более трети всего объема ДФО.

На втором месте среди федеральных округов находится Центральный, где выход новых проектов увеличился на 124%, до 1,417 млн кв. м. Самая высокая активность строителей в ЦФО отмечена в Москве (+219% по сравнению с июлем, 677 тыс. кв. м), Подмосковье (+99%, 222 тыс. кв. м) и Калужской области (рост в 18 раз, 115 тыс. кв. м).

   

Фото: archsovet.msk.ru

    

Третьим по активизации новых строек стал Северо-Западный федеральный округ (+39% к июлю, до 286 тыс. кв. м).

В трех из восьми исследованных федеральных округов в августе зафиксирован спад запуска новых жилых проектов: в Сибирском (-36%, до 288 тыс. кв. м), Уральском (-22%, до 342 тыс. кв. м) и Северо-Кавказском (-19%, до 210 тыс. кв. м).

Эксперты отмечают усиление конкуренции застройщиков на российском рынке жилищного строительства. Особенно этот процесс заметен среди крупных компаний, в портфеле строительства которых находится более 1 млн кв. м жилья.

    

Еще больше оперативных новостей рынка строительства МКД и уникальной аналитики Единого ресурса застройщиков — в нашем телеграм-канале ЕРЗ.РФ НОВОСТИ.

Присоединяйтесь к нам! 

 

 

 

 

Другие публикации по теме:

Эксперты: в августе московские новостройки продолжили дорожать

Заинтересованы ли застройщики в сокращении объемов ввода жилья: мнения экспертов

Эксперты: в августе запуск новых проектов застройщиками вырос более чем на треть

Никита Стасишин: Минстрой обеспокоен возможным снижением ввода жилья и не исключает корректировку показателей нацпроекта

Опубликован ТОП по вводу жилья по итогам января — августа 2024 года

В июле ввод жилья в Москве увеличился вдвое

Максимальные объемы ввода многоквартирных домов застройщиками за январь — июль 2024 года показали Москва, Санкт-Петербург и Краснодарский край

Максимальные объемы ввода жилья за январь — июль 2024 года показали Московская область, Краснодарский край и Республика Татарстан

Росстат: ввод многоквартирных домов застройщиками в России за январь — июль 2024 года уменьшился на 25,1% (графики)

Росстат: ввод жилья в России за январь — июль 2024 года вырос на 3,4% (графики)

+

Утверждены новые национальные стандарты, устанавливающие методы контроля отдельных строительных конструкций и скрытых работ

На одном из порталов правовой информации опубликованы приказы Росстандарта №1502-ст и №1509-ст от 24.10.2024, которыми утверждены национальные стандарты, устанавливающие методы контроля отдельных строительных конструкций и скрыт работ.

  

Изображение сгенерировано нейросетью «Kandinsky»

 

Приказом №1502-ст утвержден ГОСТ Р 71730-2024 «Конструкции стеклянные несущие. Методы испытаний» с датой введения в действие 01.12.2024.

Стандарт распространяется на строительные конструкции из многослойного стекла, применяемые в качестве несущих, и устанавливает методы определения предела прочности и деформационных характеристик при сжатии и изгибе путем разрушающих кратковременных статических испытаний моделей и контрольных образцов из многослойного стекла.

Настоящий стандарт предназначен для применения несущих конструкций из многослойного стекла, выполненного из цельного гладкого листового стекла: закаленного, закаленного термовыдержанного, термоупрочненного, неупрочненного, с низкоэмиссионным твердым покрытием, солнцезащитным или декоративным твердым покрытием, окрашенного в массе, с самоочищающимся покрытием, закаленного эмалированного (стемалит). В качестве промежуточного слоя при этом используются этиленвинилацетатная (EVA, ЭВА), поливинилбутиральная (PVB, ПВБ) пленки по ГОСТ 9438, прослойки из ионопласта (IP, ИП) и другие прослойки.

Стандарт устанавливает требования:

 к условиям проведения испытаний моделей/образцов;

• к отбору и подготовке образцов;

• к испытательному оборудованию, оснастке, средствам измерений;

• к порядку проведения испытаний;

• к оформлению протокола испытаний;

• к обработке результатов испытаний;

• к безопасности при проведении испытаний.

В процессе подготовки к эксперименту разрабатывается программа испытаний, в которой определяется формат испытаний:

• испытания моделей (прототипов) несущих конструкций;

• испытания контрольных образцов;

• испытания моделей (прототипов) несущих конструкций и контрольных образцов.

Стандартом предусмотрены испытания моделей/образцов стержневых несущих конструкций:

• на сжатие: определение разрушающей нагрузки при центральном приложении вертикального усилия, при внецентренном приложении вертикального усилия на образец; определение относительной деформации сжатия;

• на изгиб: определение разрушающей нагрузки и относительной деформации растяжения при чистом изгибе поперек слоев сечения образца; определение разрушающей нагрузки и относительной деформации растяжения при чистом изгибе вдоль слоев сечения образца.

   

  

Приказом №1509-ст утвержден ГОСТ Р 71733-2024 «Строительные работы и типовые технологические процессы. Контроль качества скрытых работ геофизическими методами при строительстве подземных объектов» с датой введения в действие 01.08.2025.

Стандарт предназначен для учета при проектировании и строительстве подземных сооружений и устанавливает правила проведения неразрушающего контроля качества скрытых работ геофизическими методами.

Стандарт распространяется на неразрушающий контроль качества железобетонных свайных фундаментов, траншейных «стен в грунте», «стен в грунте» из буросекущих и бурокасательных свай, фундаментных плит и обделки тоннелей, грунтоцементных свай и массивов.

Выбор геофизического метода для контроля качества скрытых работ осуществляется исходя из возможностей методов при решении задач контроля качества конструкций.

Стандарт устанавливает правила проведения неразрушающего контроля качества скрытых работ следующими методами.

• Сейсмоакустический метод контроля длины и сплошности свай основан на регистрации искусственно возбуждаемых в стволе сваи упругих волн с целью получения сведений о длине и сплошности бетона сваи. Для возбуждения упругих волн используется механический удар молотка по оголовку сваи. Акустические волны регистрируются с помощью датчика, установленного на оголовке сваи;

• Георадарное профилирование позволяет определить наличие дефектов в бетоне, обводненных участков, оценить стояние контакта «конструкция-грунт», проверить наличие и геометрию армирования, локализовать области дополнительного армирования или участки коррозии арматуры. Обследование, как правило, ведется по поверхности плиты или обделки. Метод заключается в передаче в объект контроля с помощью излучающей антенны электромагнитного импульса с последующей регистрацией откликов с помощью приемной антенны. Множество трасс располагают друг за другом, их амплитудные значения кодируются цветом. Так формируются радарограммы отдельных профилей наблюдения;

• Ультразвуковой метод. Контроль сплошности бетона свай и стен в грунте ультразвуковым методом основан на анализе параметров ультразвуковых волн, получаемых при проведении измерений через предварительно установленные в теле конструкции трубы доступа. Основной диагностический параметр — изменение времени первого вступления сигнала/ скорости распространения сигнала, вспомогательный — затухание сигнала.

 

 

Для проведения измерений источник и приемник синхронно перемещают по трубам доступа и с заданным шагом производят возбуждение и регистрацию ультразвуковых сигналов. Зарегистрированные сигналы передают на персональный компьютер для дальнейшей визуализации, обработки и интерпретации. Метод испытаний позволяет обнаружить области нарушения сплошности бетона, расположенные в пределах плоскостей между осями труб доступа, локализовать их по глубине и выполнять оценку их расположения в пределах сечения сваи;

• Термометрический. Неразрушающий контроль качества бетона свай и стен в грунте термометрическим методом основан на измерении температуры в процессе твердения бетона с целью получения сведений о сплошности бетона сваи. Измерения проводятся через установленные в составе арматурного каркаса конструкции трубы доступа с помощью термометрического зонда или с применением закладных кос температурных датчиков. Зарегистрированные температурные профили передаются на персональный компьютер для дальнейшей визуализации, обработки и интерпретации.;

• Скважинный сейсмоакустический метод. Использование сейсмоакустического каротажа для обследования грунтоцементных свай и колонн состоит в возбуждении упругих волн в заполненной флюидом скважине в теле сваи и регистрации приемником колебаний волн разных типов, распространяющихся по жидкости, внутренней поверхности ствола скважины, по телу сваи и окружающей сваю породе. Скорости распространения этих волн, их динамические характеристики и спектральный состав несут информацию о геометрии и упругих параметрах тела сваи.

   

Еще больше оперативных новостей рынка строительства МКД и уникальной аналитики Единого ресурса застройщиков — в нашем телеграм-канале ЕРЗ.РФ НОВОСТИ.

Присоединяйтесь к нам! 

 

 

 

  

Другие публикации по теме:

Как скорректированы индексы сметной стоимости строительства в III квартале 2024 года

Очередные уведомления о новых проектах СП

Опубликованы уведомления о новых проектах СП

Вышли уведомления о новых проектах сводов правил и изменениях действующих

Опубликованы уведомления о проектах изменений в сводах правил

Очередные уведомления о проектах новых изменений в СП

Проекты новых изменений в сводах правил

Проекты новых изменений в сводах правил на проектирование образовательных организаций и судов

Росстандарт проинформировал о разработке новых сводов правил

Изменения правил проектирования систем внутреннего тепло- и холодоснабжения, отопления, вентиляции и кондиционирования воздуха

Изменения в действующих сводах правил и новые стандарты

Как изменятся правила проектирования для маломобильных групп населения

Минстрой разъяснил условия применения стандартов организации при разработке проектной документации

Минстрой будет контролировать применение типовой проектной документации в регионах

Вступил в силу национальный стандарт, устанавливающий требования к малым грузовым лифтам

Требования к порядку подготовки и содержанию результатов применения способов обоснования принятых проектных решений